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Abstract 

An integral analysis of hydrodynamics and heat transfer in a thin liquid film flowing over 

a rotating disk surface is presented for both constant temperature and constant heat flux 

boundary conditions. The model is found to capture the correct trends of the liquid film 

thickness variation over the disk surface and compare reasonably well with experimental 

results over the range of Reynolds and Rossby numbers covering both inertia and rotation 

dominated regimes. Nusselt number variation over the disk surface shows two types of 

behavior. At low rotation rates, the Nusselt number exhibits a radial decay with Nusselt 

number magnitudes increasing with higher inlet Reynolds number for both constant wall 

temperature and heat flux cases. At high rotation rates, the Nusselt number profiles 

exhibit a peak whose location advances radially outward with increasing film Reynolds 

number or inertia. The results also compare favorably with the full numerical simulation 

results from an earlier study as well as with the reported experimental results. 

Introduction 
Many investigations have been performed in the past on flow and heat transfer 

characteristics in thin liquid films due to the fact that high heat transfer rates can be 

obtained in thin films as reviewed by Webb and Ma [l]. Hydrodynamic characteristics of 

thin liquid films flowing over stationary and rotating disk surfaces are important in 

understanding the major factors affecting the heat transfer performance. A better 
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understanding of the fluid mechanics of the liquid film flow allows better design and 

optimization of high performance compact heat transfer systems such as those employed 

in space applications, where considerations on efficiency, size, and weight are of critical 

importance. Study of rotating thin-film fluid physics and heat transfer is a!so of 

fkndamental interest in the development of compact vapor absorption systems. 

Watson [2] was first to analyze a free-falling jet impinging on a horizontal 

stationary plate. The film flow was divided into four regions. The first region was the 

impingement zone, followed by a second region of a growing boundary layer in the liquid 

film which eventually reaches to the film surface. Third region comprised of the 

transition to a fully developed film flow followed by a fully developed flow regime 

identified as the fourth region. For stationary and rotating liquid films at low flow rates 

and rotation speeds, a hydraulic jump could exist that has been studied both 

computationally and experimentally under normal and zero gravity conditions by Faghri 

and coworkers [3,4] and Avedisian and Zhao [5]. The hydraulic jump phenomenon was 

found to disappear at zero gravity conditions. Labus and Dewitt [6] conducted a 

combined numerical and experimental study to determine the free surface of a circular jet 

impinging on a flat plate in microgravity. The governing potential flow equations were 

solved numerically. The experimental study was performed using a drop-tower. The flow 

patterns of the free surface were examined experimentally, concluding that the surface 

tension and inertia were the dominant forces acting on the liquid. The experimental 

results were found to be in a good agreement with the numerical results. Thomas et al. 

[3] performed a useful one-dimensional analysis of the film thickness including the 

hydraulic jump phenomenon. They predicted significant thinning of the film with 

increased levels of rotation. They neglected inertia in their analysis. 

Miyasaka [7] performed a similar theoretical and experimental study of the 

thickness of a thin viscous liquid film on a rotating disk. He obtained the film thickness 

by solving the governing equations of motion in the inviscid and viscous limits, with the 

latter utilizing the boundary layer approximation. Miyasaka also carried out experiments 

by using a liquid jet falling onto the center of a rotating disk. He deduced the film height 

from the electrical resistance of the liquid on the disk by comparing it to the electrical 

resistance of a standard thickness of the fluid. The computed values were found to agree 
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with the experimental results. Rahman et al. [4] was the first to report a full numerical 

solution of the momentum equations using a finite difference scheme. The method 

utilized a boundary-fitted coordinate gridding scheme with a k-E model for turbulence 

closure and an iterative technique to define the free surface. They predicted the liquid- 

film thickness in the vicinity hydraulic jump reasonably well and evaluated the effects at 

the outer edge of the disk. Rahman and Faghri [8] investigated the hydrodynamic 

behavior of a thin liquid film flowing over a rotating disk. They used a three-dimensional 

boundary-fitted coordinate system to perform the calculations. The computed film 

thickness agreed well with existing experimental measurements. It was also concluded 

that the flow was dominated by inertia near the entrance and by centrifugal force near the 

outer edge the disk. The hydrodynamic characteristics of a radially spreading liquid jet 

on a horizontal plate were also predicted numerically by Buyevich and Ustinov [9]. 

However they reported no comparison with other studies. 

Rao and Arakeri [ 101 performed an analytical study of free liquid jets on surfaces 

including circular plates, cones, and spheres. They used a boundary layer approximation 

and a third order polynomial for the velocity profile. The equations were solved by the 

integral method. Their work however did not include heat transfer in the film. 

Nevertheless, they were the first to use the integral approach to predict relevant 

parameters like film thickness. They also did not present any experimental validation of 

their data. 

Azuma and Hoshino [ 1 13 examined the laminar-turbulent transition, liquid-film 

thickness, velocity profile, stability, and wall pressure fluctuations of thin liquid films on 

a stationary horizontal disk. The laminar-turbulent transition was determined as a 

function of the nozzle inside diameter, the gap height, and the volumetric flow rate. The 

liquid-film thickness measurements were performed using a needle probe. More recently, 

Ozar et al. [12] measured the liquid film thickness by a laser light reflection technique 

with which the spatial distributions of film thickness were captured including the 

hydraulic jump. 

Heat transfer in liquid films was first analyzed by Chaudury [13] who 

incorporated Watson’s results into the heat transfer analysis. Wang et al. [ 141 developed 

a two-domain solution in which the heat transfer at the liquid film and the solid disk were 
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treated separately and matched at the liquid-disk interface. Rahman and Faghri [SI used 

mixed numerical and analytical methods to predict the heat transfer. For developing flow 

and heat transfer, a three dimensional numerical model was utilized. Also, a two 

dimensional ar,alytical solution was formlated for developing heat transfer 2nd fully 

developed flow assuming solid body rotation. For the case of fully developed heat 

transfer and fluid flow, a closed form solution was developed. This solution predicted 

that the Nusselt number, based on film thickness, approached a constant value in the fully 

developed regime. Carper et al. [ 151 evaluated the convective heat transfer from a jet of 

cooling oil to an approximately isothermal rotating disk. Correlations were presented for 

the average Nusselt number as influenced by rotational Reynolds number, jet Reynolds 

number and radius of impingement. Carper et al. [I61 later extended their study to 

include the effect of Prandtl numbers. Vader et al. [17] studied the effects of jet velocity 

and temperature on the heat transfer between a planar water jet and a stationary heated 

plate. They concluded that the heat transfer performance was affected by the free stream 

turbulence intensity and the Prandtl number. A similar study was presented by Stevens 

and Webb [ 181 where the influence of jet Reynolds number, nozzle to plate, spacing and 

jet diameter were evaluated. Empirical correlations were developed for stagnation point, 

local and average Nusselt numbers. Faghri et al. [I91 presented heat transfer results for a 

controlled liquid impinging jet on a stationary disk. They presented a numerical study 

showing good agreement between heat transfer predictions and experimental data. 

Auone and Ramshaw [20] performed heat and mass transfer experiments on a liquid 

flowing over a rotating disk. They predicted the heat transfer coefficients analytically by 

adapting the solution that Nusselt [2 11 used for the film condensation under the influence 

of gravity. Ozar et al. [22] published an experimental study of heat transfer and reported 

the local and disk surface averaged Nusselt number over a range of flow rates and 

rotation speeds for water. Recently, Rice et al. 1231 published fill numerical computation 

of heat transfer in a thin liquid film over a rotating disk simulating the experimental 

conditions of Ozar et al. [22]. 

Review of the literature indicates that the analysis of the problem has progressed 

along two main themes. One theme has been numerical solution of the full problem 

taking into account its salient features. The other is of analytical nature utilizing 
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simplifying assumptions to obtain simple analytical results. In between lies the studies 

that utilize the Karman-Pohlhausen type integral analyses. This type of analysis is 

capable of capturing sufficient details of the solution while avoiding oversimplifications 

needed in analytical studies. For example, many of the analytical analyses had not 

considered the liquid film inertia effects in the presence of rotation. It was thus the 

objective of this study to present a comprehensive integral analysis of the thin liquid film 

flowing radially outward on a circular disk including effects of inertia and rotation. 

Capability of the integral method to predict the flow and heat transfer is demonstrated by 

comparisons with experimental and numerical results for the same problem. 

Problem Formulation 
The rotating disk is schematically shown in Fig. 1 which resembles the 

experimental set-up that has been utilized by Thomas et a1 [3] and Ozar et aZ[12,22] in a 

series of experimental studies. In the experiments, the flow is introduced from a central 

collar that directs the liquid radially outward over a gap height of h,. The liquid flows 

over the rotating disk while being heated from underneath by an electric resistance heater. 

In these experimental studies, the liquid film thickness and heat transfer coefficients were 

measured. Liquid film thickness measurements were made by either a capacitance probe 

[3] or an optical technique [ 121. The heat transfer coefficients were determined from the 

difference between the measured disk surface temperature and the liquid inlet 

temperatures and the constant heat flux supplied to the disk. 

The problem is considered in the radial (r)  and axial (2) coordinates assuming 

azimuthal symmetry. For this situation, the governing equations in cylindrical coordinate 

system over a rotating circular disk are: 

- 0  - - (Tu,) + - - i a  
r ar az 

Continuity: 

i a  
r ar 

r-momentum: - - (ru,u,) + 

Energy: -- r -  +- 1 a (  ar\ dZT] 
r ar\ & I  dzz 

Defining non-dimensional parameters as, 
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where r, is the inlet radius of the disk, u,is the inlet velocity of the liquid jet, ho is the 

collar height, 8, is the nondimensional temperature for the constant wall temperature and 

Oqis its counterpart for constant wall heat flux. To is the temperature of the disk surface 

for constant wall temperature case, IT is the inlet temperature of the liquid jet, qo is the 

heat flux supplied to the disk for the constant wall heat flux case. Non-dimensionalizing 

the governing equations we obtain, 

i a  
ar 

where Reynolds, Rossby and Peclet numbers are defined as 

Re = - , R o = + , P e = -  UOr, U 2  uoro 
Y 0'0 a 

where Y is the kinematic viscosity and a is the thermal diffusivity, both of which are 

assumed to be constant in the context of this analysis. 

Since r, > h,, then, 5 >> 1 , we can infer that rz  

h0 

Hence the momentum and energy equations take the form 

r" ar 
2 

- ( 5 )  - - 
Pe h, 

(7) 
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Liquid Film Hydrodynamics 

Integrating the momentum equation with respect to Z from 0 to 8 = -, we get, 
6 
h0 

From continuity equation, we can write 

A parabolic radial velocity profile is assumed as, 

iir = a, + q ~ " +  a2Z2 (1 1) 

subject to the boundary conditions of no slip at the wall G r ( Z  = 0) = 0 and no shear at the 

free surface ~ ( 2  = S )  = 0 .  In addition, the total volume flow at any cross-section 

perpendicular to r has to be equal to the inlet flow rate for the case of no vaporization or 

mass loss, these conditions allow determination of coefficients in the velocity profile 

leading to, 

a i r  
az 

Substituting this profile into the integral momentum equation and integrating with respect 

to z , one gets 

In this equation, the first two terms are due to advection, the third term is a result of 

rotation and the term on the right side represents the viscous shear. Equation 13 subject 

to the initial condition s"(? = 1) = 1 was numerically integrated to determine the film 

thickness over the disk surface. Equation (1 3) becomes an algebraic equation for the case 

of negligible inertia in which case the first two terms disappear. The film thickness can 

be written in exact form as, 
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This result is identical to that obtained based on the falling film analysis with gravity 

being replaced by the centrifugal force. Having the liquid film hydrodynamics 

established, we now proceed with the heat transfer analysis in the film. 

Heat Transfer in the Liquid Film 
The heat transfer in the liquid film is analyzed by considering the two cases of 

constant disk surface temperature and constant disk surface heat flux. In either case, 

there is a thermal entry region where the thermal boundary layer lies below the film 

surface as shown in Fig. 1. As it is shown in Appendix A for constant disk surface 

temperature case, the thermal entry region length scales as, 

r*= - [ 1+- :( - ;:j2]'2 
For moderate Peclet numbers, E - 1 (or r* =: r,) since h, << r,, thus allowing us to neglect 

the entry length. 

Constant disk surface temperature case 

For this case, the temperature profile can be constructed as a second order polynomial 

given by, 

de  
dz 

which has to satisfj. the boundary conditions: 8 = 0 at z = 0, - = 0 at z = 8 ~ .  The 

profile satisfying these conditions is, 

Substituting this profile along with the velocity profile into the integral energy equation, 

one obtains, 

Integrating and applying the condition that O m ( ?  = 6 )  = I ,  we get 
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Defining the Nusselt number as, Nu, I - = --- 
k 5 d.? 

1 2 
1 ?& 5 - - [ Pe r. 6 4 

Nu, =27exp r0 -- - -Jy+-(6 -a*) 
hod 

The area-averaged Nusselt number can be defined as 
1 7  
I N U ,  = JNur 2JrrdF 

n(F2 -1) , 
Constant heatflux case: 

The temperature profile for the constant heat flux case is subject to 

31 = 0 ,  i.e., prescribed heat flux at the wall, qo and adiabatic free surface. With these 
dZ -8 

conditions, the temperature profile becomes, 

where u0 is a parameter which is a function of r. Substituting this temperature profile 

into the integral form of the energy equation and integrating, one gets, 

d8 2 d 8  8d8  
d? 

subject to the initial value of a,(? = 1). While this value can be taken as ao( i )  = 1 based 

on Oq (i‘ = 1) = 1 in eqn. (22), a better estimate is provided by integrating the energy flux at 

i‘ = 1 , 1; [ + l]di = 1 , yielding a, (? = 1) = 1 / 3 . For the case of negligible inertia, an 

analytical solution for a, can be obtained as described in Appendix B, 

Nusselt number for the case of constant disk surface heat flux can be found from, 
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r, 
E- 

Nu, - hr, = q o c  
k k[T("zO)-?] a,h, 

For the case of negligible inertia, 

The averaged Nusselt number is obtained by integrating the local Nusselt number over 

the disk surface based on eqn. (21). In the following, the results obtained from this 

analysis are presented and discussed. 

Results and Discussion 

The calculation of the liquid film thickness and Nusselt numbers for constant wall 

temperature and constant heat flux cases were performed for a range of inlet Reynolds 

numbers Re = and Rossby numbers Ro = +. The range of parameters were U2 

V r, 
chosen to cover those reported in the experiments of Ozar et al [12,22] and the recent 

numerical simulations of Rice et a1 [23]. The value of the geometric parameter 2 was 

taken to be same as in the experiments with a value of 200. In the following, the 

computed results are presented and compared with numerical and experimental results 

mentioned above. 

r 

ho 

Figure 2 shows the variation of the film thickness over the disk surface with 

Reynolds number for two values of Rossby number. At low rotation speeds (Ro = lOOO), 
the film thickness initially increases along the disk radius and then begins to thin out at 

outer radii due to effect of rotation as seen in Fig. 2a. The film thickness decreases with 

increasing inlet velocity or Reynolds number and the peak film thickness location shifts 

to larger radii with increasing Re. The analytical result given by eqn. (14) is also shown 

in Fig. 2a for Re = lo4. It is seen that the two results agree at large radii where the 

inertial effects are diminished and the negligible inertia result agrees with the full 

solution. At high rotation rates (Ro = 0.5), film thickness exhibits a radial decay with the 

film thickness still decreasing with increasing inertia as shown in Fig. 2b. The variation 
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of the film thickness for high levels of rotation is well represented by eqn. (14) as seen by 

the agreement at Re = lo4. The effect of varying the rotation speed on the film thickness 

at a constant value of inlet velocity or Reynolds number is depicted in Fig. 3. With 

increasing rotation speed (i.e. decreasing Ro), the film thickness decreases. The trend at 

high Roy which exhibits a maximum in the film thickness, gradually changes to a radially 

decaying film thickness at high rotation speeds (Le. low Ro). This change appears to 

happen at around Ro = 10 for this case. The computed results are in reasonably good 

agreement with the experimental results reported by Ozar et a1 [22] as shown in Fig. 4. 

The integral model captures the trend of liquid film thickness variation at different 

Reynolds and Rossby numbers. Due to the uncertainties in the experimentally measured 

film thickness, a closer agreement can not be expected. 

Figure 5 shows the variation of the Nusselt number over the disk surface for the 

case of constant wall temperature. At low rotation rates (Ro = lOOO), shown in Fig. 5a, 

the Nusselt number decreases continuously with increasing radial distance. The 

magnitude of Nusselt number is highest at the entrance since the temperature gradient, 

and heat flux is the highest there at the liquid-disk interface. With increasing radial 

distance, the liquid film temperature increases and consequently the heat flux diminishes 

leading to a decrease in the heat transfer coefficient and Nusselt number. The value of 

Nusselt number approaches a constant value at large radii. Nusselt number increases 

with increasing inlet velocity or Reynolds number as expected. At high rotation speeds, 

shown in Fig. 5b, the trend of Nusselt number is quite different in that it increases from 

the inlet to a maximum value and decreases from that point on. The magnitude of 

Nusselt number increases with increasing Reynolds number with the peak Nusselt 

number location shifting radially outward. This prounounced increase in Nusselt number 

is due to the thinning of the liquid film due to inertia and rotation. The decrease at larger 

radii is due to the effect of heating of the liquid film reducing the temperature gradient 

and heat flux. At high rotation rates, Nusselt number increases significantly above the 

values for low rotation rates suggesting the strong enhancement of heat transfer due to 

rotation. 

To better visualize the effects of rotation at a fixed value of inlet velocity or 

Reynolds number, Figure 6 shows the effect of Rossby number on Nusselt number 
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variation. At low rotation speeds (i.e. high Ro), the Nusselt number is highest at the 

entrance and decreases with increasing radial distance. At about Ro = 1, the trend 

exhibits an increase of Nusselt number from the inlet reaching a maximum value 

followed by a decay. At higher rotation rates (Ro = 0.5), this trend of Nusselt number 

becomes more pronounced with the maximum values of Nusselt number being an order 

of magnitude higher. The peak Nusselt number location shifts to smaller radii indicating 

that the rotational effects are felt at smaller radii with increasing rotation speed. 

In Figure 7, the results are shown for the constant heat flux case at two values of 

Rossby number. At low rotation rates (i.e. high Ro), the Nusselt number variation is 

similar to that of constant wall temperature case (shown in Fig. Sa) except that the 

Nusselt number magnitude is higher than that for the constant wall temperature. The 

increase in Nusselt number is expected since the heat flux at the disk surface is 

maintained in this case. For the high rotation speed (Ro = 0.5), Nusselt number exhibits a 

decay with increasing radial distance at low Reynolds number as the temperature of the 

liquid at the disk surface increases with increasing radial distance, similar to the constant 

wall temperature case. With increasing Reynolds number, the Nusselt number magnitude 

increases and it exhibits a maximum. 

Figure 8 illustrates the influence of rotation on the Nusselt number variation with 

at a fixed value of inlet velocity or Reynolds number. It is found that rotation enhances 

the heat transfer into the liquid film very significantly. As the rotation rate reduces, the 

maximum in the Nusselt number variation disappears and it decays continuously with 

increasing radial distance. The location of the peak shifts to smaller radii with increasing 

rotation rate (i.e. decreasing Ro) since the effects of rotation are felt fiu-ther in with 

increasing rotation. 

Figure 9 shows the comparison of the integral method results with the full 

numerical simulation results of Rice et aZ[23]. The comparisons are shown for Re = 1.42 

lo4 and 2.84 lo4 for two rotation speeds of 50 and 100 rpm. The agreement between the 

integral model and numerical simulations appears to be good with maximum deviations 

of about 20 %. It is conceivable that the differences are due to variable fluid properties 

not accounted for in the integral model as well as the more detailed treatment afforded in 

the numerical model, such as conjugate heat transfer, evaporation effects etc. Figure 10 
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displays the comparison of experimental results with the integral model for two cases. It 

is found that the experimental results good agreement with the model for these two cases 

with the radial variation of experimental Nusselt number being slightly less. Considering 

the uncertainty of the experimental data and the simplifications employed in the model, 

the level of agreement is remarkable. 

The area averaged Nusselt numbers over the disk surface are shown in Figs. 11 

and 12 respectively for the cases of constant wall temperature and constant heat flux. 

The trend of average Nusselt number is approximately linear for both cases with slightly 

decreasing curvature for the constant wall heat flux at low rotation rates (Le. high Ro). 

The influence of Rossby number is nonlinear however and the average Nusselt number is 

found to scale as %xRo-"'where m-0.55 for constant wall temperature and 

rn = 0.18 for constant heat flux. The stronger dependence for constant wall temperature 

can be rationalized based on the fact that heat transfer into the film is enhanced more for 

the constant wall temperature case in contrast to the constant wall heat flux. 

Finally, Figure 13 shows the comparison of the analytical solution given by eqn. 

(26) for the negligible inertia case with the full solution for Re = lo4 and Ro = 0.5. It is 

seen that the two solutions differ substantially near the entrance region, but merge at 

large radii where the inertial effects have diminished. 

Concluding Remarks 
A detailed integral analysis of flow and heat transfer in a thin liquid film flowing 

over a rotating disk was formulated to determine the liquid film thickness and Nusselt 

numbers for both constant wall temperature and heat flux cases. The results are 

presented for a range of inlet liquid flow rates or Reynolds numbers and Rossby numbers. 

It is found that the integral model captures the variation of film thickness over the disk 

radius for a range of parameters representing both inertia and rotation dominated regimes. 

At low rotation rates corresponding to high Rossby numbers, the film thickness grows 

radially until the centrifugal effect becomes sufficiently strong at large radii. For high 

inlet flow rates or Reynolds numbers, the film thickness decreases radially with decay 

being stronger with increasing inertia. For low inertia, the film thickness increases 

radially due to significant retardation of the film flow by viscosity. In cases where both 
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inertial and rotational effects come into play, the film thickness first increases reaching a 

maximum followed by radial decay. The location of maximum film thickness changes 

based on the values of Reynolds and Rossby numbers. For cases dominated either by 

high rotation or low inertia, the film thickness is well represented by the analytical 

expression obtained for negligible inertia. 

The analysis of the heat transfer in the liquid film indicate that the Nusselt number 

exhibits a radial decay at low rotation rates (Le. high Ro) for both cases of constant wall 

temperature and constant heat flux. The magnitude of Nusselt number is linearly 

dependent on inlet Reynolds number for both cases. However, the Nusselt number 

values for constant wall heat flux are greater than those for the constant wall temperature. 

At high rotation speeds and inlet Reynolds numbers, the Nusselt number first increases, 

reaches a peak and then displays a radial decay. The radial location of the peak Nusselt 

number shifts to larger radii with increasing Reynolds number and this is due to the 

competing effects of inertia and rotation on the film thickness and heat transfer 

characteristics. Effect of Rossby number appears to be significantly non-linear and high 

rotation rates can produce significant enhancement in heat transfer for both cases of 

constant wall temperature and heat flux. In addition to local Nusselt number variation, 

the disk surface area averaged Nusselt numbers were computed for both cases. They also 

show an approximately linear variation with respect to inlet flow rate or Reynolds 

number and inverse power law dependence on Rossby number. Rossby number 

dependence is stronger for the constant wall temperature case. 

The results obtained from this integral analysis were compared with those from a 

recent numerical study of Rice et aZ[23] as well as the experiments of Ozar et aZ[21,22]. 

Both comparisons indicate good agreement with the integral model. Finally, the integral 

analysis provided analytical and semi-analytical expressions for the local Nusselt number 

in the limit of negligible inertia for the cases of constant wall heat flux and constant wall 

temperature respectively. 
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APPENDIX A 

For determining the thermal entry length for the constant disk surface temperature case, 

the temperature profile in this region is taken as, 

2 6, 
4 s Introducing, i E 7 and /3 = - , the previously determined velocity profile and the 

nondimensional temperature profiles become, 

substituting into the integral energy equation and integrating to 2 = 1 ,  one gets 

sincep < l,p3 << p2 , the equation governing becomes, 

with the condition that f?(F = 1) = 0 .  The solution is obtained by direct integration as, 

-, 
If we assume that 6 = 1 ,  then the integral can be evaluated as, 

(A51 

Since h, << v,, then, E = 1 or vt =: v,. The smallness of the entry region length is utilized 
in the heat transfer analysis presented in the main body of the paper. 
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APPENDIX B 
Considering the integral momentum equation given by eqn. (9), neglecting the inertial 

terms on the left hand side allows the direct integration between 2 = 0 and ,f = 8 to yield 

the velocity profile, 

The corresponding film thickness can be obtained upon integration for the total 

volumetric flow rate of liquid at any radius leading to the expression for 8 given by eqn. 

(14). Substitution of this velocity profile into the energy integral equation leads to the 
following differential equation for a,, 

2 113 213 113 113 

- da, L ( L )  + -(-) 3ll37 Ro (t) 
dF RePr h, 30 Re -$( (E) a,?-8'3 (B2) 

Since r, =. h, , the last term on the right hand side is small compared to the others. If 

neglected, eqn. (B2), becomes directly integrable. Applying the condition 

a,(?' = 1) = 1/3,  we get, 
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Fig 1 1 :  Variation of Average Nusselt Number (based on area) 
with Reynolds Number for different rotation rates 
corresponding to the constant wall temperature. 
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